VERAC °) DE

Binary Static Analysis

Chris Wysopal, CTO and Co-founder

March 7, 2012
Introduction to Computer Security - COMP 116

B1

Chris Wysopal, Veracode’s CTO and Co-Founder, is
responsible for the company’s software security analysis
capabilities. In 2008 he was named one of InfoWorld's Top
25 CTO's and one of the 100 most influential people in IT

by eWeek. In 2010, he was named a SANS Security
Thought Leader.

In the 90’s he was one of the original vulnerability
researchers at The LOpht. He has testified on Capitol Hill in
the US on the subjects of government computer security
and how vulnerabilities are discovered in software. Chris
Wysopal is the lead author of “The Art of Software Security
Testing” published by Addison-Wesley.

VERAC DE

Writing insecure code creates a system that is just as
vulnerable as not using passwords, missing encryption, or
neglecting to build any other security feature.

———————————————————
Evolution of Computer Intrusions

v'"Misconfiguration of networks or hosts
v Weak or blank passwords, world readable file shares
v'Vulnerability in underlying OS or other “infrastructure”
hardware/software
v" Steady stream of updates from Microsoft, IBM, Cisco, Oracle

v“Social Engineering” or tricking the user

v Download and run malicious codec or install free AV, phishing, clicking
on link to exploit client software vulnerabilities

v'Vulnerabilities in software
v Media players, desktop software, web applications

VERAC DE

v'Analysis of software performed
without actually executing the

oot Static
Analysis

v'Full coverage of the entire source
or binary

v'In theory, having full application
knowledge can reveal a wider
range of bugs and vulnerabilities
than the “trial and error” of
dynamic analysis

v Impossible to identify
vulnerabilities based on system
configuration that exist only in
the deployment environment

VERAC DE

=,
Benefits of Binary Static Analysis

v C99 specification has many unspecified, or implementation
defined, constructs, e.g.:

v" Order of function argument evaluation
int i = 0;
foo(i++, i++); // foo(@, 1), or foo(1l, 0)
bar(a(), b(), c()); // where a(), b(), and c() have side effects

v" Order of expressions
int i = 9;
a[++i] = 1i; // a[l] = 1, or a[l] = ©

v Many others (Google for "nasal demons”)
v Detect flaws in third-party libraries

v'Is the compiler trustworthy? (Ken Thompson, “Reflections on
Trusting Trust”)

VERAC DE

NSNS,
Benetfits Of Binary Analysis

v Binary analysis has 100% coverage. All code can be analyzed,
regardless of source availability.

v Exact modeling of control flow in the presence of compiler
switches is automatic, for example, buffer checks do not have
to be emulated.

v You analyze exactly what is being shipped. Backdoors inserted
in source, compiled, and then removed from source will still be
found.

v Binary-level flaws such as optimizations that remove memory
clearing of cryptographic keys, can be detected.

v Code is always analyzed in its complete execution context.

Analyzing ‘pieces’ of programs leads to higher false-positive
rates.

VERAC DE

NSNS,
Binary Static Analysis
Architecture

Generate

Create a high-
level model of
the application
including data
flow, control
flow, taint
coloring, and
numeric

ranges >

Perform metrics based
analysis by on raw Security
scanning the vulnerability Metrics
model for the data, and use
existence of debug symbols
coding patterns to correlate
indicative of security flaws
security flaws > with original

source code

Load and
disassemble the

binary and
Program
libraries into an

intermediate
representation

Reporter

Model Analyzer

Detailed
Flaw List

vApplication Modeler

VERAC DE

Components of Static Binary Analysis

v'Binary Modeler
v'This component builds a model from the binary directly,

producing a high-level representation of the program that
includes reconstructed dataflow and control flow
elements suitable for human consumption or machine-
based inspection.

v'Intermediate Representation

v'This component is the core of the analysis, the data
structure that represents the entire ‘meaning’ of the
program being analyzed, designed carefully to represent
everything and make assumptions about very little to
nothing. There are some liberties one can take here but
you have to be very careful!

VERAC DE

——
Program Structure (SOM)

v'Describes how the program is organized
v'Procedures and functions
v Libraries
v Class layout
v'Data structure layout
v'"Not much analysis performed here, but provides the

foundation for data flow and control flow phases to
be layered on

VERAC DE

R,
Components of Static Binary Analysis

v'Model Querying and Condition Searching System

v'This is responsible for searching the intermediate model
for characteristics.

v'In the case of Veracode, this is the part that looks for
‘security flaws’. At no point in the process before this
stage does ‘security’ really come into play.

v'Static Binary Analysis could easily be looking for other
things such as general code quality problems or to
compare two models for equivalent pieces via graph
isomorphism that might suggest code being stolen and
reused elsewhere

VERAC DE

Decompilation is Compilation in Reverse

(] A
Tokenization (lexical) =) Sl el S Ciegtitany
B patterns
=)
pod m
P
Basic block generation, a Reconstruct basic block
control flow 5 graph and control flow
-
Data flow transforms, register Analyze expressions, discover
coloring, assembly generation code, optimize data flow
=
=
=
Optimization, copy constant "c'é Variablize: undo coloring,
propagation, loop unrolling =Ml determine variable lifetimes
3
=) .
. . Wl Load executable, unlink DLLs,
Emit machine code
D convert to custom IR
v)

VERAC DE

—
A Brief Explanation of Taint

(THE SOURCE (DOVS THE PROPAGATOR
 wy NOSE #SNIFES gy BOB-#SNIFFs
« R N
HEY DOVG!

THE DECONTAMINATOR [[THE ik (YO |

DOVG LOOKED AwfUL..

yOU
I SHOVLD W MY HANDS % O “—

—————
Data Flow

v'Track data from the time it enters the program
throughout its variable lifetime

v'"Multiple taint colors can be applied to any piece of
data: untrusted, sensitive, decrypted, fromstorage,
fromnetwork, etc.

v'Report locations where tainted data is used in a
potentially dangerous situation

eStatement.execute()
eServletRequest.getParameter()

eString.concat()

ePreparedStatement.execute()

eHttpServletRequest.getHeader() oStringBuffer.append() «ServletOutputStream.print()
eHttpServletRequest.getCookies() «String.getBytes() «ServletOutputStream.write()
eHttpUtils.parsePostData() «String.split() «Runtime.exec()
*Socket.getlnputStream() «String.toLowerCase() *File()
DynaActionForm.get() «StringBuilder.insert() «FileInputStream()

eetc.

ectc. eetc.

Control Flow

v'A basic block is code that has one
entry point, one exit point and no jump
instructions contained within it

v'A control flow graph represents all
paths that might be traversed during /
execution; it is a group of basic blocks
with directed edges \

v'Consider virtual function calls;
what appears to be a simple call to

myFunction() may actually have 10
different control flow edges

VERAC DE

__/

mﬁgﬁ@

Numeric Ranges

v’ Attempt to predict the range of values for a variable at a
particular location in the code

v Use these ranges in conjunction with type information, buffer
sizes, etc. to detect memory corruption issues and other
numeric flaws

char lookup(int idx) { Q: What is the range of idx?

char buf[32];
load_values(buf)/ A: INT_MIN to INT_MAX

return buf[idx];

¥
h look fe(int id . .
c arch:ﬁ EE;?;Z?EN idx) 1 Q: What is the range of idx?
load_values(buf); A: INT_MIN to 31
if (idx < 32) { (oops, still vulnerable)
return buf[idx];
} else {
printf(“idx was %d”, idx); >Q: What is the range of idx?
return 0;
} A: 32 to INT_MAX

VERAC DE

———————————————————
Veracode Query Language (VQL)

v'Declarative scan language scan Ii::eiombl {

matcC
v'Abstracts away internals L1: now = time(_);

_ L2: VQL_COMPARE(now, bombtime);
v"Makes scan intent clear }
. where {
v"Makes scan reviewable AlwaysConst(bombtime, L2);
v'Shortens development time ;erfo,.m (
Annotate(L2, VULN Time Bomb);
}
}

VERAC DE

NSNS,
Detecting Flaws

v'Coding flaws can be represented by patterns

v'Pose a series of questions to the control flow
and data flow models to determine if those
patterns exist

v Example: Is user-supplied data ever
concatenated into an ad-hoc SQL query?

v'Relies on control flow, data flow,
untrusted taint color, and knowledge of
database APIs

VERAC DE

=,
Detecting Flaws

v Example: Is sensitive information ever
exfiltrated from a mobile application?

v'Relies on control flow, data flow, sensitive
taint color, and network communication
APIs for a specific mobile platform

VERAC DE

Questions?

Thank You!

VERAC DE

